

A198369


Decimal expansion of least x having 4*x^2+4x=cos(x).


3



1, 1, 0, 2, 3, 8, 4, 7, 4, 6, 2, 7, 9, 4, 3, 9, 5, 9, 5, 8, 0, 5, 8, 1, 8, 3, 6, 5, 8, 6, 7, 8, 8, 1, 3, 9, 4, 4, 9, 1, 9, 2, 4, 8, 4, 6, 4, 3, 3, 1, 7, 4, 9, 1, 7, 4, 3, 6, 5, 7, 0, 7, 8, 7, 4, 1, 5, 7, 9, 8, 0, 2, 0, 1, 8, 1, 3, 2, 9, 9, 5, 9, 2, 5, 9, 7, 1, 9, 5, 8, 2, 4, 5, 4, 1, 1, 4, 7, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

See A197737 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

least x: 1.1023847462794395958058183658678813...
greatest x: 0.203451325531925041555116805060611...


MATHEMATICA

a = 4; b = 4; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.1}, WorkingPrecision > 110]
RealDigits[r1] (* A198369 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .20, .21}, WorkingPrecision > 110]
RealDigits[r2] (* A198370 *)


CROSSREFS

Cf. A197737.
Sequence in context: A100869 A110142 A158928 * A193731 A193975 A224665
Adjacent sequences: A198366 A198367 A198368 * A198370 A198371 A198372


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 24 2011


STATUS

approved



