This will be a talk at Methodological Approaches in the Study of Recent Mathematics: Mathematical Philosophy and Mathematical Practice, at the University of Konstanz on 21 September. You can find the slides for the talk here, and a recent draft of the paper here.

Abstract: A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often forcing constructions that add subsets to models are cited as evidence in favour of the latter. This paper informs this debate by analysing ways the Universist might interpret this discourse that seems to necessitate the addition of subsets to V. We argue that despite the prima facie incoherence of such talk for the Universist, she nonetheless has reason to try and provide interpretation of this discourse. We analyse extant interpretations of such talk, and analyse various tradeoffs in naturality that might be made. We conclude that the Universist has promising options for interpreting different forcing constructions.

### Like this:

Like Loading...