Multiverses and Fine-Tuning

Neil Barton
Slides available via the "Blog" section of my website
https://neilbarton.net/blog/

■ This talk is concerned with multiverse theories.

- This talk is concerned with multiverse theories.
- The physical multiverse is pretty well-known.

- This talk is concerned with multiverse theories.
- The physical multiverse is pretty well-known.
- Probably the second-best well-known multiverse.

■ The set-theoretic multiverse is perhaps less well-known.

- The set-theoretic multiverse is perhaps less well-known.
- Whilst the idea has been around for a while (plausibly at least since [Zermelo, 1930]) the term "set-theoretic multiverse" was coined in [Woodin, 2011] and picked up as a view of ontology by [Hamkins, 2012].

- The set-theoretic multiverse is perhaps less well-known.
- Whilst the idea has been around for a while (plausibly at least since [Zermelo, 1930]) the term "set-theoretic multiverse" was coined in [Woodin, 2011] and picked up as a view of ontology by [Hamkins, 2012].
- It's unclear, however, how much is shared between the physical and set-theoretic multiverse.

- The set-theoretic multiverse is perhaps less well-known.
- Whilst the idea has been around for a while (plausibly at least since [Zermelo, 1930]) the term "set-theoretic multiverse" was coined in [Woodin, 2011] and picked up as a view of ontology by [Hamkins, 2012].
- It's unclear, however, how much is shared between the physical and set-theoretic multiverse.
- Especially given that one seems to concern concreta and the other abstracta.

- The set-theoretic multiverse is perhaps less well-known.
- Whilst the idea has been around for a while (plausibly at least since [Zermelo, 1930]) the term "set-theoretic multiverse" was coined in [Woodin, 2011] and picked up as a view of ontology by [Hamkins, 2012].
- It's unclear, however, how much is shared between the physical and set-theoretic multiverse.
- Especially given that one seems to concern concreta and the other abstracta.

- The set-theoretic multiverse is perhaps less well-known.
- Whilst the idea has been around for a while (plausibly at least since [Zermelo, 1930]) the term "set-theoretic multiverse" was coined in [Woodin, 2011] and picked up as a view of ontology by [Hamkins, 2012].
- It's unclear, however, how much is shared between the physical and set-theoretic multiverse.
- Especially given that one seems to concern concreta and the other abstracta.

QUESTIONS.

How similar are the two views really? Are there shared underlying philosophical principles behind the two?

MAIN CLAIM

Each can be motivated using a notion of fine-tuning.

Introduction

Physical fine-tuning

Mathematical fine-tuning

Conclusions

■ The idea that there are multiple universes of physics is often linked to the idea of fine-tuning.

- The idea that there are multiple universes of physics is often linked to the idea of fine-tuning.
- The constants and initial conditions that govern our physical universe seem fine-tuned for life.

■ For example:¹

Multiverses and Fine-Tuning

¹See [Friederich, 2022] for a survey.

- For example:¹
- Constants. e.g. The strength of gravity compared to the the strength of electromagnetism seems fine-tuned for life. (If gravity had been substantially weaker, galaxies, stars, and planets would not have formed. Much stronger, and stars would be too short-lived.)

¹See [Friederich, 2022] for a survey.

- \blacksquare For example:¹
- Constants. e.g. The strength of gravity compared to the the strength of electromagnetism seems fine-tuned for life. (If gravity had been substantially weaker, galaxies, stars, and planets would not have formed. Much stronger, and stars would be too short-lived.)
- Initial conditions. e.g. The global cosmic energy density seems fine-tuned for life. (Slightly larger and the universe recollapses too fast, slightly smaller and the universe expands too fast, and stars and galaxies fail to condense out.)

¹See [Friederich, 2022] for a survey.

- \blacksquare For example:¹
- Constants. e.g. The strength of gravity compared to the the strength of electromagnetism seems fine-tuned for life. (If gravity had been substantially weaker, galaxies, stars, and planets would not have formed. Much stronger, and stars would be too short-lived.)
- Initial conditions. e.g. The global cosmic energy density seems fine-tuned for life. (Slightly larger and the universe recollapses too fast, slightly smaller and the universe expands too fast, and stars and galaxies fail to condense out.)
- These can even be 'unnatural' (e.g. mass of the Higgs Boson and cosmological constant, cf. [Friederich, 2019]).

¹See [Friederich, 2022] for a survey.

THE PHYSICAL UNIVERSE VIEW

THE PHYSICAL UNIVERSE VIEW

- The physical universe view is then often supplemented with an explanation of the fine-tuning phenomenon, e.g. maybe
 - (a) we're very lucky, or

THE PHYSICAL UNIVERSE VIEW

- The physical universe view is then often supplemented with an explanation of the fine-tuning phenomenon, e.g. maybe
 - (a) we're very lucky, or
 - (b) we have an intelligent designer, or

THE PHYSICAL UNIVERSE VIEW

- The physical universe view is then often supplemented with an explanation of the fine-tuning phenomenon, e.g. maybe
 - (a) we're very lucky, or
 - (b) we have an intelligent designer, or
 - (c) the fine-tuning is illusory (it will eventually be explained away).

Some have found these arguments unsatisfactory, however, in particular:

Some have found these arguments unsatisfactory, however, in particular:

Mysticism

The idea that the universe is fine-tuned for life either by luck or design is fundamentally mysterious.

THE PHYSICAL MULTIVERSE VIEW

There is not just one physical universe (ours) with the relevant initial conditions and constants, but rather many (no one of which contains all the concreta).

■ We can, in addition, supplement this view with a **Richness Principle:** the idea that any consistent set of initial conditions/constants is realised in some universe in this "multiverse".

THE PHYSICAL MULTIVERSE VIEW

There is not just one physical universe (ours) with the relevant initial conditions and constants, but rather many (no one of which contains all the concreta).

- We can, in addition, supplement this view with a **Richness Principle:** the idea that any consistent set of initial conditions/constants is realised in some universe in this "multiverse".
- We can then formulate an abductive and/or probabilistic argument for the physical multiverse hypothesis.

THE PHYSICAL MULTIVERSE VIEW

There is not just one physical universe (ours) with the relevant initial conditions and constants, but rather many (no one of which contains all the concreta).

- We can, in addition, supplement this view with a Richness Principle: the idea that any consistent set of initial conditions/constants is realised in some universe in this "multiverse".
- We can then formulate an abductive and/or probabilistic argument for the physical multiverse hypothesis.
- The existence of a universe supporting life is very unlikely (almost to the point of mysticism) under the universe hypothesis), but overwhelmingly probable (and totally non-mystical) under a suitably rich multiverse hypothesis.

■ The Inverse Gambler's Fallacy. Seeing some very unlikely outcome makes it likely that there have been many such trials.

- The Inverse Gambler's Fallacy. Seeing some very unlikely outcome makes it likely that there have been many such trials.
- e.g. Suppose you go into a casino and you see six consecutive sixes.

- The Inverse Gambler's Fallacy. Seeing some very unlikely outcome makes it likely that there have been many such trials.
- e.g. Suppose you go into a casino and you see six consecutive sixes.
- Were there many trials already?

- The Inverse Gambler's Fallacy. Seeing some very unlikely outcome makes it likely that there have been many such trials.
- e.g. Suppose you go into a casino and you see six consecutive sixes.
- Were there many trials already?
- No. Any specific run of numbers is as unlikely as any other.

- The Inverse Gambler's Fallacy. Seeing some very unlikely outcome makes it likely that there have been many such trials.
- e.g. Suppose you go into a casino and you see six consecutive sixes.
- Were there many trials already?
- No. Any specific run of numbers is as unlikely as any other.
- Doesn't the multiversist commit this fallacy too? Just because we're unlikely to see a universe tuned for life doesn't entail there are many 'trials' (i.e. universes)?

- The Inverse Gambler's Fallacy. Seeing some very unlikely outcome makes it likely that there have been many such trials.
- e.g. Suppose you go into a casino and you see six consecutive sixes.
- Were there many trials already?
- No. Any specific run of numbers is as unlikely as any other.
- Doesn't the multiversist commit this fallacy too? Just because we're unlikely to see a universe tuned for life doesn't entail there are many 'trials' (i.e. universes)?
- Large literature here with a lot of ways of tweaking the examples.

■ Let's move on to the philosophy of set theory.

- Let's move on to the philosophy of set theory.
- In some sense though, set theory is just a bellwether for other areas; any time you have a large number of epistemic possibilities and a lack of a clear structure, you'll get the same phenomenon.

- Let's move on to the philosophy of set theory.
- In some sense though, set theory is just a bellwether for other areas; any time you have a large number of epistemic possibilities and a lack of a clear structure, you'll get the same phenomenon.
- As many will be aware, the Continuum Hypothesis (the statement that $2^{\aleph_0} = \aleph_1$) is independent from the axioms of our "standard" set theory (ZFC).

- Let's move on to the philosophy of set theory.
- In some sense though, set theory is just a bellwether for other areas; any time you have a large number of epistemic possibilities and a lack of a clear structure, you'll get the same phenomenon.
- As many will be aware, the Continuum Hypothesis (the statement that $2^{\aleph_0} = \aleph_1$) is independent from the axioms of our "standard" set theory (ZFC).
- But this goes for a huge number of statements.

■ Interestingly, this discovery has led to a debate between the following pair of views.

■ Interestingly, this discovery has led to a debate between the following pair of views.

■ Interestingly, this discovery has led to a debate between the following pair of views.

THE SET-THEORETIC UNIVERSE VIEW

There is just one set-theoretic universe containing all (set) abstracta.

THE SET-THEORETIC MULTIVERSE VIEW

There is not just one set-theoretic universe, but rather many (no one of which contains all the abstracta).

■ Again, we may want to supplement the Set-Theoretic Multiverse View with the following.

Balaguer's Principle

(Extracted from [Balaguer, 1998]) Every consistent set theory T is instantiated in a (at least one) corresponding universe of sets.

■ At first sight the Physical and Set-Theoretic Multiverse Views look very different.

- At first sight the Physical and Set-Theoretic Multiverse Views look very different.
- One is about *abstracta* and the other *concreta*.

- At first sight the Physical and Set-Theoretic Multiverse Views look very different.
- One is about *abstracta* and the other *concreta*.
- However, I want to argue that there is something like a fine-tuning argument available to the advocate of the set-theoretic multiverse.

■ In 1917, Mirimanoff was careful to distinguish between the "ordinary" and "extraordinary" sets (what we'd now call "ill-founded" and "well-founded" sets) and left it open whether all sets are ordinary (i.e. well-founded).

²Lots of work here, starting with Penelope Maddy's seminal papers [Maddy, 1988a] and [Maddy, 1988b].

- In 1917, Mirimanoff was careful to distinguish between the "ordinary" and "extraordinary" sets (what we'd now call "ill-founded" and "well-founded" sets) and left it open whether all sets are ordinary (i.e. well-founded).
- This move doesn't seem to make sense if we're working with the contemporary "iterative" conception of set. (This view naturally motivates the idea that sets are well-founded.)

²Lots of work here, starting with Penelope Maddy's seminal papers [Maddy, 1988a] and [Maddy, 1988b].

- In 1917, Mirimanoff was careful to distinguish between the "ordinary" and "extraordinary" sets (what we'd now call "ill-founded" and "well-founded" sets) and left it open whether all sets are ordinary (i.e. well-founded).
- This move doesn't seem to make sense if we're working with the contemporary "iterative" conception of set. (This view naturally motivates the idea that sets are well-founded.)
- There were a multiplicity of ways of proceeding compatible with Mirimanoff's thought.

²Lots of work here, starting with Penelope Maddy's seminal papers [Maddy, 1988a] and [Maddy, 1988b].

- In 1917, Mirimanoff was careful to distinguish between the "ordinary" and "extraordinary" sets (what we'd now call "ill-founded" and "well-founded" sets) and left it open whether all sets are ordinary (i.e. well-founded).
- This move doesn't seem to make sense if we're working with the contemporary "iterative" conception of set. (This view naturally motivates the idea that sets are well-founded.)
- There were a multiplicity of ways of proceeding compatible with Mirimanoff's thought.
- We're now in a similar situation with many different ways of enriching our concept of set to yield different axiom systems.²

²Lots of work here, starting with Penelope Maddy's seminal papers [Maddy, 1988a] and [Maddy, 1988b].

■ There's a kind of negative probabilistic argument available here (see [Barton, 2022]).

- There's a kind of negative probabilistic argument available here (see [Barton, 2022]).
- Given the myriad ways set theory might proceed, what convinces us that we're settling on the right theory of sets (assuming that we're universe theorists)?

- There's a kind of negative probabilistic argument available here (see [Barton, 2022]).
- Given the myriad ways set theory might proceed, what convinces us that we're settling on the right theory of sets (assuming that we're universe theorists)?
- As [Hamkins, 2012] puts it: "Set theorists build models to order".

- There's a kind of negative probabilistic argument available here (see [Barton, 2022]).
- Given the myriad ways set theory might proceed, what convinces us that we're settling on the right theory of sets (assuming that we're universe theorists)?
- As [Hamkins, 2012] puts it: "Set theorists build models to order".
- For ZFC + ϕ (for some ϕ independent ϕ we take to be true), the universe seems fine-tuned to our theory.

- There's a kind of negative probabilistic argument available here (see [Barton, 2022]).
- Given the myriad ways set theory might proceed, what convinces us that we're settling on the right theory of sets (assuming that we're universe theorists)?
- As [Hamkins, 2012] puts it: "Set theorists build models to order".
- For ZFC + ϕ (for some ϕ independent ϕ we take to be true), the universe seems fine-tuned to our theory.
- Particularly so when we note that we may go on to accept more axioms.

0000

One way of responding to this fine-tuning problem:

One way of responding to this fine-tuning problem:

Mysticism

One way of responding to this fine-tuning problem:

Mysticism

(Often (mis)attributed to Gödel) We have some quasi-mystical perceptual ability that allows us to "perceive" set-theoretic truths.

Similar problems to the physical multiverse case (also with luck).

■ A better (?) response: Take some sort of multiverse picture.

- A better (?) response: Take some sort of multiverse picture.
- **Descriptivism.** Our reference to set-theoretic reality is mediated by the descriptions we provide.

- A better (?) response: Take some sort of multiverse picture.
- **Descriptivism.** Our reference to set-theoretic reality is mediated by the descriptions we provide.
- If multiversism is true, we're guaranteed to be speaking truly when we utter ZFC + ϕ , whereas it's mysterious under universism.

■ What about the inverse gambler's fallacy charge?

- What about the inverse gambler's fallacy charge?
- One response for the physical multiverse: Since there is an **observer selection bias** (observers don't exist at worlds inhospitable to life) we don't commit the fallacy (see Bradley's vs. Landsman on urns).

- What about the inverse gambler's fallacy charge?
- One response for the physical multiverse: Since there is an **observer selection bias** (observers don't exist at worlds inhospitable to life) we don't commit the fallacy (see Bradley's vs. Landsman on urns).
- [Friederich, 2019] has argued that these responses are only good insofar as one already holds some multiverse-style position, since you really need it to be the case that you could have ended up sampling a different universe.

■ Maybe the same goes here: Insofar as we're picking from a wide variety of options, picking just one hospitable to our favourite theory seems fine-tuned.

- Maybe the same goes here: Insofar as we're picking from a wide variety of options, picking just one hospitable to our favourite theory seems fine-tuned.
- Might we have lived in a different set-theoretic universe?

- Maybe the same goes here: Insofar as we're picking from a wide variety of options, picking just one hospitable to our favourite theory seems fine-tuned.
- Might we have lived in a different set-theoretic universe?
- Remember **Descriptivism**: The idea that we refer by description.

- Maybe the same goes here: Insofar as we're picking from a wide variety of options, picking just one hospitable to our favourite theory seems fine-tuned.
- Might we have lived in a different set-theoretic universe?
- Remember **Descriptivism**: The idea that we refer by description.
- This would allow us to live in a different universe (that may or may not be fine-tuned to some ϕ).

- Maybe the same goes here: Insofar as we're picking from a wide variety of options, picking just one hospitable to our favourite theory seems fine-tuned.
- Might we have lived in a different set-theoretic universe?
- Remember **Descriptivism**: The idea that we refer by description.
- This would allow us to live in a different universe (that may or may not be fine-tuned to some ϕ).
- If there's time: Compare with the categoricity arguments for the universe position.

■ However I think there's a deeper problem; we can't change our location in the physical multiverse.

- However I think there's a deeper problem; we can't change our location in the physical multiverse.
- For fine-tuning to work, we need the following two assumptions:

- However I think there's a deeper problem; we can't change our location in the physical multiverse.
- For fine-tuning to work, we need the following two assumptions:
- 1. We could have lived in a different universe.

- However I think there's a deeper problem; we can't change our location in the physical multiverse.
- For fine-tuning to work, we need the following two assumptions:
- 1. We could have lived in a different universe.
- 2. We are, as a matter of fact, stuck in the one we're given.

- However I think there's a deeper problem; we can't change our location in the physical multiverse.
- For fine-tuning to work, we need the following two assumptions:
- 1. We could have lived in a different universe.
- 2. We are, as a matter of fact, stuck in the one we're given.

- However I think there's a deeper problem; we can't change our location in the physical multiverse.
- For fine-tuning to work, we need the following two assumptions:
- 1. We could have lived in a different universe.
- 2. We are, as a matter of fact, stuck in the one we're given.

PHILOSOPHICAL CONJECTURE.

The kind of descriptivism provided will affect the validity of fine-tuning.

■ So: I think that a comparison of the set-theoretic multiverse with the physical multiverse is helpful for understanding each.

- So: I think that a comparison of the set-theoretic multiverse with the physical multiverse is helpful for understanding each.
- There is a kind of fine-tuning argument available in both cases.

- So: I think that a comparison of the set-theoretic multiverse with the physical multiverse is helpful for understanding each.
- There is a kind of fine-tuning argument available in both cases.
- There are, however, disanalogies that may be significant for assessing this argument.

- So: I think that a comparison of the set-theoretic multiverse with the physical multiverse is helpful for understanding each.
- There is a kind of fine-tuning argument available in both cases.
- There are, however, disanalogies that may be significant for assessing this argument.
- e.g. We can't change our location.

- So: I think that a comparison of the set-theoretic multiverse with the physical multiverse is helpful for understanding each.
- There is a kind of fine-tuning argument available in both cases.
- There are, however, disanalogies that may be significant for assessing this argument.
- e.g. We can't change our location.
- But there's still a lot to be done.

- So: I think that a comparison of the set-theoretic multiverse with the physical multiverse is helpful for understanding each.
- There is a kind of fine-tuning argument available in both cases.
- There are, however, disanalogies that may be significant for assessing this argument.
- e.g. We can't change our location.
- But there's still a lot to be done.
- In particular, properly formalising the fine-tuning argument and inverse gambler's fallacy charge in the set-theoretic case.

Thanks for listening!

References I

Balaguer, M. (1998).

Platonism and Anti-Platonism in Mathematics.

Oxford University Press.

Barton, N. (2022).

Structural Relativity and Informal Rigour, pages 133–174. Springer International Publishing, Cham.

Ewald, W. B., editor (1996).

From Kant to Hilbert. A Source Book in the Foundations of Mathematics, volume I. Oxford University Press.

Friederich, S. (2019).

Reconsidering the inverse gambler's fallacy charge against the fine-tuning argument for the multiverse.

Journal for General Philosophy of Science, 50(1):29-41.

Friederich, S. (2022).

Fine-Tuning.

In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2022 edition.

Hamkins, J. D. (2012).

The set-theoretic multiverse.

The Review of Symbolic Logic, 5(3):416-449.

References II

Maddy, P. (1988a).

Believing the axioms. I.

The Journal of Symbolic Logic, 53(2):481-511.

Maddy, P. (1988b).

Believing the axioms II.

The Journal of Symbolic Logic, 53(3):736-764.

Woodin, W. H. (2011).

The continuum hypothesis, the generic-multiverse of sets, and the Ω -conjecture, page 13–42.

Lecture Notes in Logic. Cambridge University Press.

Zermelo, E. (1930).

On boundary numbers and domains of sets.

In [Ewald, 1996], volume 2, pages 1208–1233. Oxford University Press.